Continuous and Discontinuous Finite Element Methods for Convection-Diffusion Problems: A Comparison
نویسندگان
چکیده
We compare numerically the performance of a new continuous-discontinuous finite element method (CDFEM) for linear convection-diffusion equations with three well-known upwind finite element formulations, namely with the streamline upwind Petrov-Galerkin finite element method, the residualfree bubble method and the discontinuous Galerkin finite element method. The defining feature of the CDFEM is that it uses discontinuous approximation spaces in the vicinity of layers while continuous FEM approximation are employed elsewhere.
منابع مشابه
Equidistribution grids for two-parameter convection–diffusion boundary-value problems
In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...
متن کاملA hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems
We propose and analyse a new finite-element method for convection–diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin (DG) method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection–diffusion problems. By constru...
متن کاملOn the natural stabilization of convection diffusion problems using LPIM meshless method
By using the finite element $p$-Version in convection-diffusion problems, we can attain to a stabilized and accurate results. Furthermore, the fundamental of the finite element $p$-Version is augmentation degrees of freedom. Based on the fact that the finite element and the meshless methods have similar concept, it is obvious that many ideas in the finite element can be easily used in the meshl...
متن کاملOn Discontinuous Galerkin Methods for Nonlinear Convection-diffusion Problems and Compressible Flow
The paper is concerned with the discontinuous Galerkin finite element method for the numerical solution of nonlinear conservation laws and nonlinear convection-diffusion problems with emphasis on applications to the simulation of compressible flows. We discuss two versions of this method: (a) Finite volume discontinuous Galerkin method, which is a generalization of the combined finite volume—fi...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کامل